「基本をより実践的に!」学べる新シリーズの第一弾は、「統計モデリングの世界」へのファーストブック。基礎から学べる超入門!
・チュートリアル形式だから、すぐに実践できる!
・統計、確率、ベイズ推論、MCMCの基本事項から、やさしくサポート!
・brmsやbayesplotなどのパッケージの使い方も、しっかり身につく!
・一般化線形モデル(GLM)→一般化線形混合モデル(GLMM)→動的線形モデル(DLM)→動的一般化線形モデル(DGLM)を体系的に学べる!
【本書のサポートページ】
https://logics-of-blue.com/r-stan-bayesian-model-intro-book-support/
【実践Data Scienceシリーズ】
「基本をより実践的に!」を合言葉に、データサイエンスで用いられる各種手法の基本を、プログラミングの実装とともに解説していきます。はじめて学ぶ大学生、大学院生、ソフトウェアエンジニアに向けた注目の新シリーズです。
【主な内容】
1部 【理論編】ベイズ統計モデリングの基本
1 はじめよう! ベイズ統計モデリング
2 統計学の基本
3 確率の基本
4 確率分布の基本
5 統計モデルの基本
6 ベイズ推論の基本
7 MCMCの基本
2部 【基礎編】RとStanによるデータ分析
1 Rの基本
2 データの要約
3 ggplot2によるデータの可視化
4 Stanの基本
5 MCMCの結果の評価
6 Stanコーディングの詳細
3部 【実践編】一般化線形モデル
1 一般化線形モデルの基本
2 単回帰モデル
3 モデルを用いた予測
4 デザイン行列を用いた一般化線形モデルの推定
5 brmsの使い方
6 ダミー変数と分散分析モデル
7 正規線形モデル
8 ポアソン回帰モデル
9 ロジスティック回帰モデル
10 交互作用
4部 【応用編】一般化線形混合モデル
1 階層ベイズモデルと一般化線形混合モデルの基本
2 ランダム切片モデル
3 ランダム係数モデル
5部 【応用編】状態空間モデル
1 時系列分析と状態空間モデルの基本
2 ローカルレベルモデル
3 状態空間モデルによる予測と補間
4 時変係数モデル
5 トレンドの構造
6 周期性のモデル化
7 自己回帰モデルとその周辺
8 動的一般化線形モデル:二項分布を仮定した例
9 動的一般化線形モデル:ポアソン分布を仮定した例
「基本をより実践的に!」学べる新シリーズの第一弾は、「統計モデリングの世界」へのファーストブック。基礎から学べる超入門!
・階層ベイズで個性を捉える(pymc)[2023-09-27に投稿]
・単回帰モデルを通してベイズ推定の流れとPystanの使い方を学ぶ[2020-01-01に投稿]
・【データ分析の必読10冊+差をつける10冊+100冊超】データサイエンス、データ分析、機械学習関連の本[2016-08-23に投稿]